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bstract

We describe a statistical measure, Mass Distance Fingerprint, for automatic de novo detection of predominant peptide mass distances, i.e.,
utative protein modifications. The method’s focus is to globally detect mass differences, not to assign peptide sequences or modifications to
ndividual spectra. The Mass Distance Fingerprint is calculated from high accuracy measured peptide masses. For the data sets used in this study,
nown mass differences are detected at electron mass accuracy or better. The proposed method is novel because it works independently of protein
equence databases and without any prior knowledge about modifications. Both modified and unmodified peptides have to be present in the sample

o be detected. The method can be used for automated detection of chemical/post-translational modifications, quality control of experiments and
abeling approaches, and to control the modification settings of protein identification tools. The algorithm is implemented as a web application and
s distributed as open source software.

2007 Elsevier B.V. All rights reserved.
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. Introduction

In proteomics, high throughput approaches using mass spec-
rometry have become widely used. These approaches promise
o enable researchers to assess, on a large scale, both expres-
ion level and functional state of the proteins that carry out most
unctions in a cell. The success of proteomics experiments, such

s studies of protein function and cell signaling pathways, ulti-
ately depends on how well the protein content in samples is

dentified and annotated. Consequently, a lot of effort is put

∗ Corresponding author. Tel.: +41 79 46 180 72; fax: +41 44 635 39 22.
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modification; Protein identification

nto identifying the constituent proteins using mass spectromet-
ic methods. The goal is to assign acquired spectra to known
eptide sequences and potential co- and post-translational mod-
fications. To this end database search engines were rapidly
eveloped after the introduction of ionization techniques for
iological mass spectrometry [1–5]. These approaches depend
n sequence databases that are used by the engines to match
eal spectra to theoretical in silico spectra. The matching is
omplicated by the fact that there are protein modifications
nd the sequence databases store the unmodified sequences.

o resolve this, the researcher typically defines a small set of
odifications for inclusion in the matching process. But due to

ombinatorial explosion, the usage of a large number of vari-
ble modifications is inherently difficult, if not impossible, in

mailto:peptoscope@fgcz.ethz.ch
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hese approaches. A related alternative approach is error toler-
nt searching [6–8] that considers a multitude of modifications or
utations.
The need to keep track of protein modifications is readily

ecognized by the proteomics community, and few repositories
f known peptide modifications have been created. The RESID
atabase [9] lists co- and post-translational modifications. Post-
ranslational modifications (PTMs) are also stored in Delta Mass
10] together with information on modifications induced by sam-
le preparation procedures for mass spectrometric analysis, but
ass changes are only given as integer values. FindMod [11]

lso lists some modifications and detects PTMs from this list in
onjunction with a protein sequence and a few precursor masses.
he most comprehensive collection of chemical and biologi-
al modifications being relevant to mass spectrometry can be
ound in UniMod [12]. The list of known protein modifications
s growing; in December 2006, UniMod lists 495 modifications
ncluding 144 amino acid substitutions [6].

The focus of the method presented here, Mass Distance
ingerprint (MDF), is to globally assess predominant precur-
or mass distances, i.e., finding dominant PTMs in a data
et; it is not aimed for assigning peptide sequences or mod-
fications to individual spectra. The MDF is limited to the
etection of frequent precursor mass distances and will not
etect low abundance modifications. The method to calculate
he MDF of a data set has three stages. First, the Mass Dis-
ance Histogram (MDH) is calculated. Second, a statistical
andom background model, also reported in this paper, is sub-
racted from the experimentally observed MDH. Third, Gaussian
istributions are fitted to the remaining signal for accurate deter-
ination of mass distances. The resulting list of frequent mass

istances and related information is then the Mass Distance
ingerprint.

The novelty of MDF is its independence of both sequence
atabases and of prior knowledge about modifications, since
t uses only precursor mass information. In MDF, MS/MS
evel data is not used. Approaches that use both MS/MS level
nd sequence information exist. In the P-mod algorithm [13],
S/MS spectra are compared with in silico generated spectra

sing sequence information provided to the algorithm. In con-
rast, in MDF the aim is to detect modifications de novo. The
CATcher [14] and ModifiComb [15] algorithms, like P-mod,
se MS/MS information but work independently of sequence
nformation. In contrast to P-mod, ICATcher relies on both the

odified and unmodified peptide being measured. The latter
ependency is also valid for the MDF presented here.

The MDF has a different conceptual focus than the methods
entioned above; the MDF provides a measure of modifica-

ions on the level of a collection of MS spectra, i.e., MDF is not
pplicable directly on single level spectra. Extending the MDF
o single level spectra is possible with existing technologies
omparing MS/MS spectra [14].

Both the MDH and the MDF are implemented as an algorith-

ic framework called Peptoscope. The Peptoscope source code

s distributed under the GPL license version 2 [16].
In essence Peptoscope needs the peptide masses to calculate

he MDH. These masses are fed into Peptoscope using the widely
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sed Mascot Generic File (mgf) [17]. Conveniently, most com-
ercial mass spectrometer software are capable of generating

uch mgf formatted files and the mgf format is usually used as
nput to database interrogation software. Of the available data
n the mgf, Peptoscope uses the charge and m/z information
o determine the peptide masses. Peptoscope output is a list of
etected predominant mass distances and includes annotation
ith known modifications if applicable. However, no prior mod-

fication information is used in the calculation of modifications
resent in the data.

. Experimental details

Four experimental data sets are used to illustrate the appli-
ability of the MDF for de novo detection of chemical and
ost-translational modifications. The four data sets are published
s supplemental material [18].

The tryptic peptide content of the four experiments was
eparated and analyzed by LC–ESI–MS/MS on a “Finnigan
TQ-FT” (Thermo Electron, Bremen, Germany), a hybrid
nstrument consisting of a linear ion trap and a Fourier trans-
orm ion cyclotron resonance mass spectrometer. As in [19,14],
nly doubly charged precursor masses were considered for all
ata sets.

Each data set contains one or more LC runs; each run contains
undreds if not thousands of precursor masses. The data sets
sed represent the typical variation of proteomic data in terms
f both experimental setup as well as the amount of data to be
nalyzed, i.e., the number of tandem mass spectra. The exact
umber of precursor masses used in one analysis can be found
n the Peptoscope output. The experimental details are given for
ach data set in Section 4.

.1. Data set 1

Data set 1 is derived from an in vitro study of the human
NA mismatch repair system. A DNA affinity matrix (Dyn-

Beads derivatised with heteroduplex DNA containing an
nsertion/deletion mismatch) was incubated with HeLa cell
uclear extract for either 5 min (sample 1) or 25 min (sample 2) at
5 ◦C. Proteins that bind to this matrix were subsequently eluted,
educed and labeled with the heavy- and light-cleavable ICAT
isotope-coded affinity tag) reagent [20,21](Applied Biosys-
ems, Foster City, CA, USA), respectively. The differentially
abeled samples were combined and digested with trypsin
Sequencing Grade Modified Trypsin, Promega, Madison, WI,
SA) at 37 ◦ C for 24 h. Peptides were first purified with a

ation exchange column (ICAT Cation-Exchange Cartridge,
pplied Biosystems) and ICAT-labeled peptides were sub-

equently extracted with an Avidin affinity column (ICAT
artridge Avidin, Applied Biosystems). The acid cleavage of the
iotin tag and all the remaining steps were performed according
o the manufacturer’s instructions. Sep-Pak columns (Vac C18

cc, 50 mg, Waters, Milford, MA, USA) were used for further
lean up of the affinity-purified fraction. After mass spectromet-
ic analysis and data processing this data set was analyzed by
eptoscope using 4199 precursor masses.
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the mass distance �m = |m1 − m2| was calculated. For these
mass distances, a histogram MDH(�m) was generated in the
range between 0 to 100 Da (see Fig. 1). The regular structure
of the simulated distribution can be modeled well by a sum of
F. Potthast et al. / J. Chro

.2. Data set 2

Data set 2 originated from mouse cortical synaptosomes
nd was obtained as follows: mouse cortical synaptosomes
ere prepared by differential centrifugation and sucrose den-

ity gradient fractionation as previously described [22]. Synaptic
roteins were cleaned by acetone precipitation and solubilised
n 7 M urea, 50 mM ammonium carbonate pH 7.8 before cys-
eine reduction and alkylation. Tryptic digestion was performed
vernight at 37 ◦ C with a final urea concentration of 1.5 M, and
n enzyme to protein ratio of 1:25. The resulting peptide mix-
ure was acidified to pH < 3 with acetic acid containing 25%
cetonitrile, centrifuged to remove insoluble matter before frac-
ionation using a polySULFOETHYL A strong cation exchange
hromatography HPLC column (PolyLC, USA). After lyophili-
ation, peptide fractions were desalted using reverse phase trap
artridges. Finally 819 precursor masses were used for Pepto-
cope analysis.

.3. Data set 3

Data set 3 is derived from a mouse brain sample with back-
round as follows. Neurotrypsin is a trypsin-like serine protease
redominantly expressed in the peripheral and central nervous
ystem (CNS) [23]. A truncating deletion in the human gene
esults in severe mental retardation [24]. To investigate the role
f the proteolytic activity of neurotrypsin in the CNS we gener-
ted transgenic mice overexpressing neurotrypsin specifically in
eurons starting at birth. In search for neurotrypsin-dependant
hanges in the neuronal network, hippocampi of wild-type (wt)
nd transgenic (tg) mice were prepared and the proteins were
nalyzed using the ICAT technology [20,21]. Hippocampus
omogenate was subjected to two consecutive centrifugation
teps each at 3000 × g, separating nuclei and cell debris. Then,
ith a 34,000 ×g centrifugation step S2 (soluble) and P2 (pel-

et) subcellular fractions were produced. S2 mainly consists of
oluble proteins and light membrane particles, such as synap-
ic vesicles. P2 comprises heavy membrane particles including
ynaptosomes, Golgi apparatus, endoplasmatic reticulum, mito-
hondria and plasma membranes. The samples were treated as
escribed in the protocol from Applied Biosystems Cleavable
CAT Reagent Kit for Protein Labeling. In brief, the pro-
eins were denatured and reduced, followed by labeling with
leavable ICAT Reagent by alkylation of free cysteines. The
rotein mixture was digested with trypsin and the complex
ample was fractionated using a cation exchange column. The
iotinylated peptides were subsequently purified on an avidin
artridge. Further sample treatment as in data set 1. The input
or Peptoscope was an mgf file containing 16,177 precursor
asses.

.4. Data set 4
Data set 4 is a standard protein mix of proteins as supplied by
pplied Biosystems, treated with cleavable ICAT as data set 1.
he mix consists of six proteins; bovine serum albumin (Swiss-
rot accession number P02769), �-galactosidase (P00722),
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-lactalbumin (P00711), �-lactoglobulin (P02754), lysozyme
P00698), and apotransferrin (P02787). For Peptoscope 912 pre-
ursor masses were used.

. Methods

In this section, the Mass Distance Histogram (MDH) is
efined, and a statistical model for the MDH is developed. The
tatistical model is derived from a simulation of random pep-
ides. The Mass Distance Fingerprint (MDF) is derived from the

DH and the section is concluded with an illustration of the
DF using data set 4.

.1. The Mass Distance Histogram and the Mass Distance
ingerprint: definition, simulation, model

.1.1. Mass Distance Histogram: definition
Given a set of mass spectrometric measurements, the MDH

s defined as the distribution of distances between all possible
airs of measured peptide masses. For a number of n masses,
here are n(n − 1)/2 mass distance pairs. For the purpose of this
tudy, Peptoscope analysis was restricted for mass differences
p to 100 Da, and a bin size of 0.01 Da was used in the MDH.
s an example, data set 1 consists of 4199 precursors yielding
,813,701 pairs of which 1,791,599 have a mass distance in the
istogram range.

.1.2. Simulation and model
To investigate the expected random distribution R(�m) of

n MDH, an arbitrary number of 100 million peptide pairs
ere generated randomly in a computer simulation. The mass
istribution for these random peptides follow the natural distri-
ution of peptide masses and for each of these peptide pairs,
ig. 1. Comparison of a simulated MDH(�m) (red curve) and the model R(�m)
f Eq. (1)(green curve) in mass range 5–10 Da. The MDH was obtained from
00 million randomly generated peptide pairs. The quantitative agreement is
imilar in the whole range between 0 and 100 Da.
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aussian distributions with distance δ and constant width σR:

DH(�m) ≈ R(�m, σR)= 1

κσR

√
2π

κ∑
i=0

exp − (�m − i · δ)2

2σ2
R

.

(1)

imilar results are found by performing a random pairing of pep-
ides emanating from an in silico tryptic digest of any protein
equence database and using these peptide pair mass differences
s the background R. This is a result of the fact that a tryptic digest
ill yield a peptide mass distribution that is a sum of Gaussian

ike distributions with centres approximately separated at integer
a values with empty regions between the Gaussians. Therefore

he background is best described as the distribution of masses
f unmodified random peptide pairs. Peptoscope is relying on
superposition of the measured modified and unmodified pep-

ides, where the modifications will be additional Gaussians on
op of the random background. The modification induced Gaus-
ians are much narrower than the background distribution of
aussians.
The central statement of Eq. (1) is that for all nominal mass

ifferences, the fitting Gaussian curves have the same width and
he same height with high predictive power. The factor in front of
he sum in Eq. (1) ensures that R(�m) behaves like a probability
easure,
κ

0
R(�m, σR)d(�m) = 1. (2)

n this study, κ is 100 Da as a consequence of the mass range
hoice of 0–100 Da in the MDH.

The δ in Eq. (1) originates from the fact that true pep-
ide masses are distributed in clusters with a mean value of
oughly i · 1.000458 Da where i is an integer [25,26]. For the
ass differences dealt with here, it is found to be approxi-
ately 1.00044 Da. The model has a single parameter, σR, which

s obtained from a measured MDH(�m) by minimizing the
quare deviation, E(σR), between the background model and

DH(�m):

(σR) =
∫ κ

0
[MDH(�m) − R(�m, σR)]2d(�m). (3)

nserting σR, obtained by minimizing E(σR) of Eq. (3), into
q. (1) yields the background model R(�m). In Fig. 1, both

he simulated MDH(�) and the model R(�m) are shown. The
verall similarity is good and using Peptoscope, the user can and
hould visually inspect the quality of the background model fit
ompared to the measured MDH.

It should be noted that σR must be fitted for each experiment
ndividually, it is not a universal constant. To appreciate this
tatement we have to delve into how the background masses are
uilt up. All peptide masses are built up by a composition of
lectron, proton, and neutron masses. This means that for any
iven mass there are many random ways to compose a molecule

hat will be close to that mass. The resulting masses typically do
ot match other masses exactly; a distribution at approximately
nteger masses (in Da) is built up. This natural width at inte-
er masses will become larger for increasing mass just by the
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act that there are so many more combinations contributing to a
pecific heavy mass (neighbourhood) as compared to a specific
ight mass. The variation in width will of course be visible also
hen mass differences are studied.
To further test the MDH background model, we artificially

igested a number of protein databases using the Perl script
asta2MDH.pl (obtainable from the authors by email). The script
asta2MDH.pl calculates an MDH using a protein FastA file
s input; it uses the range 0–100 Da with 10,000 bins, exactly
s used in this paper. We found that the statistical description
utlined in this section is valid also for this type of artificial
ata that describes the underlying experimental background well
data not shown).

Obviously we do not have a completely random distribution
f peptides since we are measuring a specific composition of
roteins. This is actually the important idea of Peptoscope, the
on-random component of the measured mass distributions will
e on top of the random background noise. However, in any given
xperiment we do not know whether the background is built up
y light or heavy masses but we know that the background will
ary between experiments (and be a mix of heavy and light
asses). This is the reason to introduce the fitting parameter
R—to compensate for the unknown background. From simu-

ations of the background we learn that σR varies between 0.1
nd 0.4 Da up to 6000 Da (data not shown).

As mentioned above, a real measurement is of course
xpected to contain more information than a simple random
ackground signal. Depending on the experimental details, a
umber of modifications are likely to be present, and sometimes
oth the modified and unmodified form of a peptide will be
easured. Thus, a better approximation of a real measurement
ould be an extension of Eq. (1), where the effect of the back-
round R(�m) and Gaussian signals induced by modification
ass shifts �mj are summed:

DH(�m) ≈ R(�m) +
#mod∑
j=1

sj

σj

√
2π

exp − (�m − �mj)2

2σ2
j

.

(4)

or each modification term j in Eq. (4), three Gaussian parame-
ers �mj , sj , and σj are obtained by minimizing the deviation
etween the model and the experimental MDH(�m) in the vicin-
ty of �mj . Here the fitting parameters corresponds to the mass
istance, �mj , the intensity of the signal, sj , and the width of
he fitted peptide peak, σj .

.1.3. The Mass Distance Fingerprint
The MDF for an experiment contains several triplets, �mj ,

j , and σj , as obtained from Eq. (4); triplets with sj > 1/3 ∗
(�m) are reported. Two numbers extend each triplet of the
DF; the first number extending the MDF is the estimated num-

er of true pairs: the core of the approach is to think of the
aussians described by mj , sj , and σj as originating from mod-
fication induced effects. The corresponding area of the Gaussian
s calculated from σj and sj . Using the total number of pairs
nder the curve, this can be expressed in terms of the estimated
umber of true pairs. The second number extending the MDF
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Fig. 2. Illustration of the method. Red curve: R(�m) having width σR. Green
curve: the modification induced part having width σj . The red curve seems flat
because σR � σj This peak close to δm = 58.005 Da is induced by a modifica-
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Fig. 3. Illustration of the MDF concept with data set 4, mass distances ranging
from 8 to 10 Da. Red curve: the measured MDH(�m). Blue curve: R(�m) with
σR = 0.055 Da. Green curve: signal used for deriving the Mass Distance Finger-
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ion. The area between the green and the red curve corresponds to the estimated
umber of true pairs. Ninety-five percent of these true pairs are within ±2σj

istance from 58.005 Da. The ±2σj boundaries are shown with blue lines.

s the estimated ±2σ true positive classification rate. The latter
wo numbers are illustrated in Fig. 2.

Within the Peptoscope framework, the MDF is further
nnotated with mass differences induced by known peptide mod-
fications (retrieved from UniMod [12]). When the measured
mj is close to a known PTM induced mass change, this is

eported; a list of known isobaric modifications at that �mj is
iven together with the mass deviations from the listed mass
ifference.

MDF cannot distinguish isobaric modifications, nor does it
tate if a modification adds or subtracts mass from the peptide,
nd both the unmodified and modified form of a peptide have to
e measured for the corresponding modification to be included
n the MDF.

.2. Illustration: experimental results

This section illustrates above mentioned concepts with results
rom data set 4 where 912 precursor peaks were examined. 912
recursors correspond to 415,416 possible pairs, and of these
airs, 52,478 precursor mass distances (�m) are in the range
etween 0 and 100 Da. Minimizing Eq. (3), the optimal σR in
q. (1) for this data set was found to be 0.055 Da. The measured
DH(�m), and the background model R(�m) are displayed in

ig. 3. There are two sources of deviations between the model
nd the measurement. The first deviation is that the MDH(�m)
s not close to 0 in the regions between the nominal masses dif-
erences where R(�m) is close to 0. The effect of this minor

iscrepancy is negligible for the MDF, and the source of the
ifference may be an effect of erroneous precursor charge deter-
inations or noise from the instrument. The second deviation is

harp Gaussian peaks of which some are close to known modi-
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rint. In this case, Peptoscope finds a modification at �m = 9.02967 Da which
s 0.00052 Da off from the theoretical value of the cleavable ICAT modification
m of 9.03019 Da. (See Table 1 for the complete MDF results of data set 4.)

cation mass differences. This second effect is addressed by the
odification terms in Eq. (4).
To check whether the sharp peaks on top of R(�m) are likely

o correspond to PTMs, Gaussian distributions were fitted to
he peaks as described in Eq. (4). While the binning of the

DH(�m) is performed with a bin width of 0.01 Da resulting
n 10,000 bins totally, the Gaussian fitting for the signal peaks
s performed with 10 bins (each with an width of 0.0015 Da) for
very signal peak. The fitting is achieved by minimizing the least
ean square error between the Gaussian model and the signal

eak; resulting in the three MDF parameters �mj , sj , and σj for
ach signal peak. The background, R(�m), is subtracted from
he measured MDH(�m) before the fitting procedure.

For the method to work it is necessary that σj is much smaller
han σR, i.e., the modification induced peaks must be much
harper than the underlying background distribution. The sharp-
ess of the modification induced peaks, σj , is an effect of the
ntrinsic accuracy of the instrument in MS mode. If the mass
ccuracy is improved by some factor, σj would decrease by
he same factor. As described in Section 3.1.2 the width of the
ackground distribution, σR, is mainly determined by the length
istribution of the measured peptides and is typically above
.05 Da. Thus, the accuracy of the mass spectrometer should
e somewhat below 0.01 Da for the method to be reliable. For
eptides with masses between 1000 and 3000 Da, this translates
o ppm measurement accuracy or better.

The above method yields the MDF for data set 4 presented
n Table 1. Of the 16 signals, 9 can be annotated with known

odifications from UniMod. Eight of the nine annotated mass
ifferences are closer than 0.0006 Da to the mass differences
hat would be the effect of the corresponding modifications
cting on peptides. To set above number into numerical context,

n electron has a mass of 0.000549 Da. The modifications
sed for annotating the MDF are taken from the UniMod
eb site http://www.unimod.org[12](December 2006). In the
ass range from 0 to 100 Da, there were 269 modifications

http://www.unimod.org
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Table 1
Peptoscope result for data set 4

Mass Distance Fingerprint Chemical/ptm annotation

Mass (Da) σ (×10−4) Intensity Number of
“true” pairs

±2σ true
positive (%)

Ptm (unimod.org) Deviation (×10−4 Da)

15.9947 14 1.1490 211.6 86 Oxidation; deoxy; Ala ↔ Ser;
Phe ↔ Tyr;

2

9.0297 11 2.2284 322.4 90 Label:13C (9) 5
17.0260 13 0.7370 126.0 82 Gln → pyro − Glu;

ammonia-loss
5

14.0154 10 0.6644 87.4 80 Methyl; Ala ↔ Gly; Glu ↔ Asp;
Ile ↔ Val; Thr ↔ Ser; Val → Leu

2

6.9648 18 0.2660 63.0 71 ?
58.0052 12 0.4256 67.2 76 Carboxymethyl; Asp ↔ Gly; Glu

↔ Ala
3

25.0252 16 0.2949 62.1 68 ?
0.9834 12 0.3716 58.7 73 Amidated; deamidated; Asp ↔

Asn; Glu ↔ Gln
6

7.9957 4001 0.0010 52.6 0 ?
33.9610 6 0.5872 46.3 84 ?
30.0103 13 0.2970 50.8 68 Pro → Pyrrolidinone;

hydroxymethyl; Ser ↔ Gly; Thr
↔ Ala

3

33.0217 11 0.3702 53.6 72 ?
28.9787 2335 0.0010 30.7 1 ?

1.0311 14 0.2088 38.5 64 Lysaminoadipicsealde 51
1.9698 30 0.0052 2.1 5 ?

18.0103 19 0.1504 37.6 53 Dehydrated; Glu → pyro − Glu 3

http://www.peptoscope.ms results for dataset4.mgf: version, 1.6; precursors, 912; total pairs, 415,416; range pairs, 52,478; date, Monday 27 November 19:01:20
CET 2006; model σ, 0.055. In the Mass Distance Fingerprint columns, the five MDF values (described in Section 3.1) are printed for each signal. Annotation of
t tions,
n norm
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he MDF, together with mass shift from known chemical or biological modifica
ames are preferred and printed in italics whereas interim names are printed in
eld at top right.

orresponding to 152 different mass distances. The degeneracy
s due to isobaric modifications. In the MDF report, the
SI-MS Names are preferred over the Interim Name from
niMod (cf.http://www.unimod.org). The complete list of
niMod modifications used in this study is contained in the

upplemental material [18].

. Results and discussion

In this section we present and discuss the MDFs obtained for
he four data sets used in this study. A detailed validation of the
esults using MS/MS information is reported, and the impor-
ance of mass accuracy for Peptoscope’s success is illustrated
nd quantified.

.1. MDFs for the four data sets

.1.1. Results for data set 1
The list of Peptoscope detected signals is shown in Table 2

or data set 1. This data set consists of two runs, a SIM scan and
n MS survey scan producing 4199 precursors yield 8,813,701
airs of which 1,791,500 fall in the range between 0 and 100 Da.

R of Eq. (1) is found to be 0.105 Da. The two strongest
ignals belong to the repetitive monomeric unit of polyethylene-
lycol (C2H4O) with a mono-isotopic weight of 44.0262 Da
i.e., 88.0524 Da for a C2H4O–C2H4O unit). The third sig-

s
s
A
m

is shown in the chemical/ptm annotation columns. As annotations the PSI-MS
al font style. The optimal σR (1) for the analyzed data is given in the model σ

al is at 17.0265 corresponding to an elemental difference of
H3N1), most probably pyroglutamic acid formed from glu-
amine. This modification is frequently seen in protein samples

easured in our laboratory. Three MDF signals, ++C2H7ON,
+71.02619, and 2∗Ethanolyl, are modifications that have been
etected repeatedly in our laboratory, however these three modi-
cations are not listed in UniMod. Each of the top five signals in
able 2 are estimated to correspond to more than 10,000 pairs,
ith the ±2σ true positive rate as illustrated in Fig. 2 being above
0%. The next two signals in the MDF, at �m = 4.9554 Da
nd �m = 26.9988 Da, are not close to known modifications.
he last signal in the list, �m = 21.9815 Da is supposedly a
odium adduct of chemical composition H(−1)Na. All, except
sp ↔His, MDF signals that could be annotated in this data

et match the exact mass value with smaller deviation than the
eight of an electron, 0.000549 Da.
In order to test the significance of the results, a Peptoscope

nalysis was performed for this data set, but with the mass accu-
acy being artificially decreased; Random mass shifts uniformly
istributed in the range [−0.1, 0.1] Da were added to all precur-
or masses, and nominal masses were shifted uniformly between
and 4 Da. Peptoscope was run on the resulting synthetic data
et. No signal corresponding to known modifications, having a
ignal stronger than the weakest listed in Table 2, was found.
lso, in the low mass accuracy LCQ (3D ion trap) data set
entioned below, no signals were found.

http://www.peptoscope.ms
http://www.unimod.org
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Table 2
Peptoscope result for the MDF obtained for data set 1

Mass Distance Fingerprint Chemical/ptm annotation

Mass (Da) σ (×10−4) Intensity Number of
“true” pairs

±2σ true
positive (%)

Ptm (unimod.org) Deviation (×10−4 Da)

44.0259 15 2.8991 19528 93 Ethanolyl 3
88.0522 16 2.5187 18097 92 2∗Ethanolyl l 2
17.0260 15 2.1099 14212 92 Gln → pyro − Glu; ammonia-loss
61.0523 15 1.7019 11464 91 ++C2H7ON 5
71.0258 15 1.5243 10268 91 ++71.02619 4

4.9554 9990 0.0014 6280 2 ?
26.9988 9098 0.0015 6128 2 ?
21.9815 14 0.8528 5361 88 Cation:Na 4

9.9731 7335 0.0015 4941 2 ?
83.0972 39 0.3566 6245 82 ?
34.0525 14 0.7470 4696 88 ?
48.9815 12 0.8472 4565 89 ?
22.0206 732 0.0040 1316 5 Asp ↔His 114
39.0702 14 0.8325 5234 89 ?
93.0081 14 0.6592 4144 87 ?
98.0256 15 0.5389 3630 85 ?

http://www.peptoscope.ms results for dataset1.mgf: version, 1.6; precursors, 4199; total pairs, 8,813,701; range pairs, 1,791,500; date, Monday 27 November 20:43:01
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ET 2006; model σ, 0.105. The strongest signals are two PEG signals (called
thanolyl are modifications that have been seen in our laboratory repeatedly, th
eight of 61.05276 Da.

.1.2. Results for data set 2
The MDF results for data set 2, originating from a sin-

le run, are the weakest of this study, as can be seen from
able 3. 819 precursors give 334,971 pairs of which 101,945
re in the MDH mass range. The optimal is σR = 0.055 Da.

hree out of four predominant annotated mass shifts are found
ithin sub-electron mass accuracy. The gamma-carboxylation

nnotated mass distance is just 0.0001 Da off the true
alue.

i
d
t
w

able 3
eptoscope result for the MDF obtained for data set 2

ass Distance Fingerprint

ass (Da) σ (×10−4) Intensity Number of
“true” pairs

5.9947 20 0.3750 191.7

1.0019 23 0.2216 130.2
7.9951 20 0.1836 93.8

3.9899 25 0.1303 83.2
1.9560 757 0.0017 32.9
0.9898 979 0.0011 27.5
7.9535 178 0.0010 4.6
5.9864 340 0.0040 34.7
4.9928 774 0.0010 19.8
6.9955 11 0.1010 28.4
7.9827 1605 0.0011 45.1
2.1187 550 0.0040 56.2
4.0261 12 0.1447 44.4
9.9754 11 0.0571 16.1
9.9860 451 0.0029 33.4
5.9620 47 0.0127 15.3

ttp://www.peptoscope.ms results for dataset2.mgf: version, 1.6; precursors, 819; tot
ET 2006; model σ, 0.055.
olyl in UniMod). The three modifications ++C2H7ON, ++71.02619, and 2 ∗
currently not listed in UniMod. The suggested C2H7ON has a mono-isotopic

.1.3. Results for data set 3
Originating from 33 runs, data set 3 had by far the most

oubly charged precursors, 16,177. This results in more than
30 million pairs of which more than 19 million are within the
DH range. σR is 0.105 Da and 10 out of 11 signals as listed
n Table 4 were annotated. All signals except that in the guani-
ination are detected with sub-electron mass accuracy. Among
he top signals, oxidation, ICAT, and pyroglutamic acid signals
ere found.

Chemical/ptm annotation

±2σ true
positive (%)

Ptm (unimod.org) Deviation
(10−4 Da)

73 Oxidation; deoxy; Ala ↔
Ser; Phe ↔ Tyr

4

62 Dehydro 59
59 Formyl;

Pro → Pyrrolidone

-2

55 Carboxy; Ala ↔ Asp -1
3 ?
1 ?
1 Ile ↔Met; Leu ↔ Met 29
3 ?
0 Nitro -77

51 ?
1 Fluoro 79
9 ?

52 Ethanolyl 1
40 ?

3 ?
15 ?

al pairs, 334,971; range pairs, 101,945; date, Monday 27 November 19:23:06

http://www.peptoscope.ms
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Table 4
Peptoscope result for the MDF obtained for data set 3

Mass Distance Fingerprint Chemical/ptm annotation

Mass (Da) σ (×10−4) Intensity Number of
“true” pairs

±2σ true
positive (%)

Ptm (unimod.org) Deviation
(×10−4 Da)

15.9945 24 0.1712 19665 70 Oxidation; deoxy; Ala ↔ Ser;
Phe ↔ Tyr

4

14.0152 26 0.0726 9034 51 Methyl; Ala ↔ Gly; Glu ↔ Asp;
Ile ↔ Val; Thr ↔ Ser; Val → Leu

4

31.9899 23 0.0969 10667 59 Dioxidation -1
1.9688 71 0.0137 4655 18 ?

58.0057 21 0.0580 5829 46 Carboxymethyl; Asp ↔ Gly; Glu
↔ Ala

-2

44.0263 21 0.0615 6181 47 Ethanolyl -1
42.0107 23 0.0604 6649 47 Acetyl -1
42.0131 1233 0.0011 6491 1 Guanidinyl; amidino;

Arg → Orn

87

3.9946 22 0.0546 5749 45 Trp → Kynurenin; Pro ↔ Thr 3
30.0103 21 0.0621 6241 48 Pro → Pyrrolidinone;

hydroxymethyl; Ser ↔ Gly; Thr
↔ Ala

3

26.0154 25 0.0467 5588 41 Delta:H (2)C (2); Pro ↔ Ala 2
46.0059 20 0.0517 4949 44 ?
17.0239 58 0.0283 7856 30 Gln → pyro − Glu;

ammonia-loss
26

27.9911 67 0.0279 8947 30 Formyl; Pro → Pyrrolidone 38
28.0315 24 0.0432 4962 39 Dimethyl; Delta:H (4)C (2);

ethyl; Ala ↔ Val
4

47.9778 101 0.0246 11891 29 Trioxidation 69
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ttp://www.peptoscope.ms results for dataset3.mgf: version, 1.6; precursors, 16
1:31:03 CET 2006; model σ, 0.105. With more than 19 million mass distance
his study.

Computing time for this data set is roughly 30 min CPU
ime. Computationally, it is on the edge of what the current
mplementation of Peptoscope can handle on usual desktop com-
uter equipment. However, the current implementation is not
ptimized for speed and can be modified to run significantly
aster. Dealing with more than 100 runs for a single MDF is
ossible.

.1.4. Results for data set 4
Data set 4 originates from a single run with ICAT-light and

CAT-heavy peptides being mixed at a ratio of 1:1. The MDF
btained with Peptoscope was derived from 912 doubly charged
recursors i.e., 415,416 pairs of which 52,478 were in the MDH
ass range. The optimal σR was found to be 0.105 Da for this

ata set. As can be seen from Table 1, Peptoscope annotated 9
f the 16 MDF signals with known modification information.
ass accuracy is about electron mass or better. The mass shift

t 25.0252 Da is not annotated, but has been repeatedly seen in
eptoscope analyses in our laboratory.

.2. Validation of MDF results using MS/MS

The novel aspect of the MDF is that it uses peptide informa-

ion only to detect predominant mass distances. Here, MS/MS
nformation is used to validate and confirm MDF results.
etailed data of this validation can be found in the supplemental
aterial [18].

w
[
a
D

total pairs, 130,839,576; range pairs, 19,093,504; date, Monday 27 November
in the MDH range of 0–100 Da, this is by far the largest data set presented in

MDF results are validated with the deltaMasses [27] program
riginating from the ICATcher algorithm [14]. deltaMasses
ompares MS/MS spectra against each other, looking for pairs
f unmodified/modified peptides using a true statistical scoring
cheme. For the validation of MDF reports, we used a delta-

asses probability cutoff p < 0.00001 i.e., one would expect
ne false positive pair in 100,000 detected pairs. deltaMasses
oes not detect pairs of MS/MS spectra below a mass differ-
nce of 4.5 Da. Therefore, low �m MDF entries do not have a
orresponding MS/MS value.

The question raised and answered by this validation is which
art of the true pairs detected by the MDF are confirmed by a
S/MS validation test. Table 5 lists the number of detected pairs

or both the MDF and the technology using MS/MS results. It
as not possible to analyze data set 3 with the MS/MS approach
ecause the software currently has an input limit of 10,000
S/MS spectra. The numbers in the table are of similar order

f magnitude which underlines the validity of MDF results.

.3. Importance of mass accuracy

To illustrate the importance of high mass accuracy, the Pep-
oscope algorithm was applied to an ICAT data set generated

ith a Thermo Electron LCQ (3D ion trap) mass spectrometer

14]. The Peptoscope distribution for this LCQ data set, having
precursor mass accuracy below 1 Da [14], is shown in Fig. 4.
ue to the low mass accuracy, Peptoscope is unable to detect

http://www.peptoscope.ms
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Table 5
Validation of MDF results with a method using MS/MS information

Mass MDF true
pairs

MS/MS
true pairs

Ptm (unimod.org)

Preliminary validation results for dataset1.mgf
44.0259 19528 19089 Ethanolyl
88.0522 18096 14944 2∗Ethanolyl
17.026 14212 2688 Gln → pyro − Glu

61.0523 11463 1330 ++C2H7ON
71.0258 10267 291 ++71.02619
4.9554 6280 – Unknown
26.9988 6128 1428 Unknown
21.9815 5361 1517 Cation:Na
83.0972 6245 235 Unknown

39.0702 5233 725 Unknown
Validation results for dataset2.mgf

15.9945 191 308 Oxidation
1.00188 130 – Dehydro
27.9951 93 121 Formyl
43.9899 83 63 Carboxy

Validation results for dataset4.mgf
15.9947 211 190 Oxidation
9.02967 322 241 Label:13C (9)
17.026 126 85 Gln → pyro − Glu

14.0154 87 73 Methyl
6.96475 63 25 Unknown
58.0052 67 18 Carboxymethyl
25.0252 62 25 Unknown
0.983416 58 – Deamidated
7.9957 52 33 Unknown
30.0103 50 15 Hydroxymethyl

The detected number of pairs is in the same order of magnitude in most cases
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onfirming the usefulness of the MDF. For compactness, the table shows only
ne UniMod abbreviation for each mass distance. The MS/MS algorithm cannot
etect low mass shift modifications.
ny signal; the observed LCQ MDH(�m) is statistically seen
at while the high mass accuracy LTQ-FT MDH clearly follows

he statistical model described by R(�m) and the model of Eq.
4)(see Fig. 3).

ig. 4. Illustrating the importance of mass accuracy. Scales are equal to those
f Fig. 3. Red line: MDH(�m) obtained from an ICAT sample measured on an
CQ mass spectrometer [14] in the mass range from �m = 8 to 10 Da. The plot
hows that the LCQ precursor data does not yield any signal with Peptoscope
ue to low mass accuracy; the MDH fluctuates randomly around the expected
andom value of 0.01 (blue line). This is to be compared with the LTQ-FT results
hown in Fig. 3.

t
r
d
a
B
d
m
a
t
i
p
i
e
i
o

o
i
u
p
m
f

i
f

r. B 854 (2007) 173–182 181

The importance of high mass accuracy is also illustrated in
ig. 2. Imagine that the mass accuracy would be increased by a
actor of 2. The green curve would have half σ and double height
hile the light grey area would remain constant. However, the
ark grey area (false positives) would decrease by a factor of 2.
hus, high mass accuracy is pivotal for the discriminative power
f the method.

Both the unmodified and modified form of a peptide have to
e measured for the corresponding modification to be detected.

possible strategy to detect complete modifications in a low
omplexity protein mix, with known protein identities, would
e to synthesize the corresponding peptides. Measuring the syn-
hesized peptides and performing a combined MDF would make
t possible to also detect constant modifications with the MDF. In
his context, the question arises what proportion of biologically

eaningful PTMs will feature both modified and unmodified
orms. Many modifications are known to be reversible, for
xample phosphorylation of serine, threonine, and tyrosine, and
cetylation of lysine. Since the reverse reactions are catalyzed by
nzymes, the unmodified form of the peptides is usually present.
n particular phosphorylations have low stoichiometries, i.e.,
hosphorylated amino acids are generally less abundant than
he corresponding nonphosphorylated residues [28]. Stable, irre-
ersible protein modifications such as arginine methylation tend
o be more complete, however, hypomethylated proteins are usu-
lly still detectable [29]. The different stoichiometry is one of the
easons why phosphorylation is not detected but methylation is.

. Concluding remarks

A statistical model for the distribution of peptide mass dis-
ances has been presented; the corresponding histogram is called
he Mass Distance Histogram (MDH). A model for the expected
andom background of the MDH is given in a form of Gaussian
istributions. From this model for the MDH, the list of mass devi-
tions is calculated; this is the Mass Distance Fingerprint (MDF).
oth the MDH and the MDF are calculated from precursor mass
ata only. The method depends on the use of mono-isotopic
asses, i.e., the knowledge of precursor charges. m/z values

lone would be insufficient because wrong mass determina-
ion would blur signals of the MDH. No MS/MS or sequence
nformation is used, and knowledge about known chemical or
ost-translational modifications is not required. Thus, the MDF
s a true de novo PTM detection approach. It is shown that the
ntries of the MDF are frequently corresponding to weight shifts
nduced by known chemical or post-translational modifications
f the peptides.

The detection of a modification on a single peptide measured
nly once seems difficult using the MDF approach. However,
magine a case where a peptide is measured 10 times, 5 times
nmodified and 5 times modified. For this case, there are 25
airs. If this is shifted to the situation of 9 unmodified and 1
odified, there are still 9 pairs. This way, the MDF compensates
or the rare modification problem to some extent.
The nature of the MDF allows it to be used as a fast qual-

ty control of labeling approaches where both light and heavy
orm of a peptide should be predominantly present; not detecting
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he expected mass shift would indicate a failure in the labeling
rocedure.

The MDH bin width used in this script was 0.01 Da. We found
hat this works well throughout our LTQ-FT experiments. For
nstruments like an Orbitrap, which can achieve better accu-
acy with about 1/2 ppm accuracy using lock spray calibration,
t might be good to decrease the bin width accordingly. The cur-
ent version of Peptoscope works with simple histograms; if a
rue signal falls exactly in between two bins, the correspond-
ng mass distance signal would be split up in two adjacent bins.

ore advanced binning approaches are possible but are not the
cope of this work.

For the high accuracy precursor masses used in this study
hich were generated by an LTQ-FT, modifications are identi-
ed at electron mass accuracy or better. The MDH and the MDF
re implemented in a framework called Peptoscope. Peptoscope
rovides an annotation of the de novo detected mass differences,
his annotation is taken from the list of known modifications
ocumented in UniMod. Peptoscope is implemented as a web
pplication and is distributed as open source software under the
NU public license. In this study, only precursor masses were
sed. Obviously, the MDF is not limited to this special case, it
an be applied to the collection of all MS signals irrespective
f MS/MS measurements being performed or not. Obtaining an
DF with Peptoscope does not require any user interaction or

arameters. Therefore, it is possible to automate MDF genera-
ion directly on the mass spectrometer instrument’s computer.

e believe that the MDF has the potential to become a standard
echnology on high accuracy mass spectrometers.
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